Discover the space sector with EmTroniX

Telecom Nancy x EmTroniX – Denis COAT, Laura TOURNACHE January 2024

Agenda

The space ecosystem

Space project development

Competences involved

Technical challenges

Focus on the JuRa project

EmTroniX key space projects

Space agencies

https://flatearth.ws/space-agency

The French ecosystem

Space education and careers in Luxembourg

LUXEMBOURG SPACE AGENCY

Current space sector-space directory

50 companies and research labs, employing more than 800 people.

European Space Education Resources Office (ESERO)

- Develops new and interactive ways to take space into the classroom
- National competitions such as CanSat
- Space Goes to School
- ISS call

• ...

What are the needs in the industry?

Engineers – Engineers - Engineers

Aerospace engineers, AI, Software, Machine learning, electronics, telecommunications, robotics, orbital dynamics,...

... but not only!

Regulatory experts, communications, international relations, education, ethics experts,....

And entrepreneurs!

With a combination of technical, business and managerial skills!

Relevant "New Space" topics Earth Medicine observation Communication Exploration and navigation Innovative Food & launch systems nutrition Debris and Material & 23 waste design management Law & space Tourism Ш policy

Get to know ESA

Get to know ESA

THE EUROPEAN SPACE AGENCY

Purpose of ESA

To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications.

Facts and figures

- Over 50 years of experience
- A 22 Member States
- 8 sites across Europe and a spaceport in French Guiana
- Over 80 satellites designed, tested and operated in flight

ESA UNCLASSIFIED

European 🖬 🐂 📲 📫 📕 🗮 🚍 📲 📕 📲 🚍 🚰 📲 🖬 🚺 📕 🚍 🖬 🗮 🔤 🕪

Get to know ESA

But first... What is a satellite ?

Different satellite's altitudes

Durations

- <u>Minutes / hours</u>: CANSAT
- <u>Weeks</u>: Science experiment in ISS
- <u>Months</u>: In orbit demonstration
- <u>Years</u>: Communication satellites
- Many years: Deep space applications

Geostationary Satellites Altitude ~35,786km Latency ~500 - 600ms

MEO Satellites Altitude ~2,000km - 36,000Km Latency ~27ms - 500ms

LEO Satellites Altitude ~160km - 2000km Latency ~ 2ms - 27ms

https://www.fujitsu.com/global/vision/insights/22-leo-satellite-broadband/

Different sizes, different masses

La taille du satellite WorldView-4 comparée à Pléiades et d'autres satellites d'observation. Infographie publié par Digital Globe

Many things depend on space

Space project milestones

Space project milestones - detailed

1. Mission definition	2. Mission feasibility	3. Preliminary definition	
 Define the need Create initial requirement 	 Initial technical designs Assess feasibility & risks Release final technical requirement specs 	 Define hardware models, plans, schedule Develop design Start procurement 	
MDR Mission Definition Review	PRR Preliminary Requirements Review	SRR (Spacecraft side) Systems Requirements Review PDR Preliminary Design Review	

Space project milestones - detailed

4. Detailed definition	5. Production& Qualification/verification	6. Operation & utilisation	
 Finalise the design Define the interface Build engineering models Plan assembly, integration, verification & testing Start user manual 	 Build qualification hardware Complete qualification testing & verification activities Build flight hardware Complete acceptance testing 	 Operation Ground segment activities 	
	and authorise delivery	FRR: Flight Readiness Review	
	QR:	LRR:	
	Qualification Review	Launch Readiness Review	
	FAR:	CRR:	
	Flight Acceptance Review	Commissioning Result Review	
CDR:	ORR:	ELR:	
Critical design review	Operational Readiness Review	End of Life Review	

EmTroniX **is not a prime contractor**, meaning we are not a satellite provider.

(But) we are proving **electronics and software solutions** for those who are building them.

Challenge time

For you, what is New space ?

- 1. An industry where businesses are the main actors
- 2. A zone further away we want to explore
- 3. The area between the Earth and Deep Space

The "New Space" approach

The goal: make the space sector affordable, cost efficient and highly reliable!

How?

→ COTS component (Commercial On The Shelf) compared to radiation tolerant or even hardened

- 2.7€ for the automotive version
- In stock.
- 200€ for the space version
- Ask for a quote...
- Packaging
- Lots
- Tests
- Documentation (certificates)

- 3€ for the automotive version
- In stock.
 - 1500€ for the space version
 - Ask for a quote...

Space Grade Components don't always exist

The "New Space" approach

Temperatures	-40°C up to 125°C	-40°C up to 80°C	
Vibration levels	15g (engine)	24g	
Shocks	50g (crash, wheels)	1500g	
Accelerations (QSL)	1500g (wheels)	15g	
Atmosphere	1 atm	1 atm to void	
Corrosion	All kind of fluids	Mainly ionization and gases	
Radiations	None Fully exposed		
Electro Static Environment (ESD)	Similar		
Electro Magnetic Environment (EMC)	Similar		
Safety related topics + Cyber	ISO	Coming	
Standards	ISO ECSS, ISO		
Quality Management	Strong management	Strong management	

Engineering at EmTroniX

Electronics design

Embedded Software

FPGA/VHDL

RF design

Digital signal processing

Mechanical design

Assembly

Production at EmTroniX (1/3)

Production at EmTroniX (2/3)

Testing - External facilities

Radiation

Vibration

Shock

EMC

Electronics – Technical challenges

Processing Performance

- Core Processing Power over the years
- Power Trees to distribute energy
- Clock Tree to distribute accurate clock signals
- Memories
- High Speed Links

Radio and Signal Processing Performance

- Highly Efficient RF chains Low Noise figure Wide Frequency ranges Efficient Power amplifiers
- Analog <> Digital converters

 high speed low noise
- Filtering

Environment

- Mechanical
- Void
- Radiation

Highly Reliable Electronics Production

- Production technical risks
- Ensuring Quality at low production volumes

System Approach

• Functional and Safety Analysis

Processing power over the years

The Moore's law seen from the computing power point of view.

XILINX Virtex UltraScale+ is one of the most powerful and efficient System On Chip today

Processing power

Variant 🕈	CPU cores ÷ (P+E)*	GPU cores ^{\$}	GPU EU	Graphics ALU	Neural Engine cores	Memory (GB) 🕈	Memory Bandwidth (GB/s)	Transistor count
A15 Bionic	5 (2+3)	5	80	640	4-6			
	6 (2+4)	4	64	512		34.1	15 billion	
		5	80	640		4-6		
MO	8 (4+4)	8	128	1024	8–24	102.4	20 billion	
IVIZ		10	160	1280		0-24	102.4	20 0000
M2 Dro	10 (6+4)	16	256	2048		16.22	204.8	40 billion
IVIZ PTU	12 (8+4)	19	304	2432		10-52	204.0	40 0111011
M2 Max	12 (8+4)	30	480	3840		32–96	409.6	67 billion
		38	608	4864				
MO Litro	24 (16+8)	60	960	7680	- 32	64–192	819.2	134 billion
WZ UIITA		76	1216	9728				

Tests - Environment

Confidential – This document is the property of EmTroniX

https://www.nasa.gov/missions/analog-field-testing/why-space-radiation-matters/

Space radiation is made up of:

- particles trapped in the Earth's magnetic field
- particles shot into space during solar flares (solar particle events)
- galactic cosmic rays, which are high-energy protons and heavy ions from outside our solar system

Charged particles are deviated by magnetic fields Rays are efficiently filtered by atmospheric layers

Space exposure to radiation highly depends on position/orbit and duration.

Effects:

- Total Dose: long term exposition to radiation that affects components for long term
- **Single Events** triggers deviations, latch ups, upsets, that could be definitive or recoverable (after power cycling)

Confidential – This document is the property of EmTroniX

https://www.researchgate.net/fi gure/Size-of-earth-comparedto-the-sun-and-a-solar-flarecreditjplnasagov_fig1_327993737

Poisson Law:

The probability p of n events occurring in time τ (related to the observation period) is given by a Poisson distribution such that:

"w" (also named λ) is the average number of events occurring per the observation period (per active year for example).

Submitted to a controlled flux of particles, the mean number of **S**ingle **E**vents is used to determine the behaviour of the components in space during the mission and the best way to mitigate them.

 $p(n, w\tau) = e^{-w\tau} (w\tau)^n / n!$

https://www.researchgate.net/figure/IDE3380-DUTs-installed-at-the-ESTEC-Co-60-facility-for-TID-testing_fig4_351752080

Intervention de particules, dont de très legeres comme les eutons ou les protons.

LES SALLES D'EXPÉRIENCES

renferment des systèmes de détectio

permettant d'étudier les propriétés de

et de mesure très sophistiqués,

GANIL in France

noyaux très exotiques.

L'ACCÉLÉRATEUR LINÉAIRE

délivre des faisceaux de particules

de très grande intensité : le nombre

accélérées et les noyaux de la cible de matière est ainsi plus important.

de collisions entre les particules

SUPRACONDUCTEUR

https://www.ganil-spiral2.eu/fr/le-ganil/presentation/linstallation-ganil/

UCL in Belgium

Confidential – This document is the property of EmTroniX

Weight

 \$10,000 to \$20,000 to launch 1 kilogram in Low Earth Orbit

Dimensions – tolerances

 Critical dimensions could lead to huge problems if not well designed

Thermal management of a harsh environment

- -65°C to +125 °C in LEO outside the CubeSat
- -40°C to +80°C inside the CubeSat

4.1 TEST PROGRAMM

4.1.1. SHOCK TEST - 1500g/0.3ms (*)

STANDARD / METHOD OF REFERENCE: IEC 60068-2-27

Confidential – This document is the property of EmTroniX

Vibrations up to 24g

4.1 TEST PROGRAMM

4.1.1. RANDOM VIBRATION TEST

STANDARD / METHOD OF REFERENCE: NF EN 60068-2-64

FREQUENCY (HZ)	AMPLITUDE (G ² /HZ)
20	0,1
50	0,8
250	0,8
400	0,24
1000	0,24
2000	0,125

Frequency bandwidth: RMS acceleration: Duration per axis: Number of axes:

Testing outside the company

Testing in Vacuum conditions at temperature limits. (Thermal analysis + Outgassing)

Lowest achievable pressure [mbar]: 3.10 – 7

No convection only conduction and radiation !

Confidential – This document is the property of EmTroniX

Testing inside the company

Life testing

- Cycling 500 to 2000 cycles
- Example of an acceleration next page

<u>Burn in</u>

• To reveal early phase failures

Functional limits, worst case analysis

Testing inside the company

Life testing

- Real operation
 - 20000 cycles for 3 years
 - -10°C to 40°C

- Cycling 1000 cycles for less than 3 months
- From -40°C up to 105°C

(((•))) Testing outside the company

Electro-Magnetic Compatibility challenge

- 1. Do not disturb others
- 2. Withstand the environment

The main test classes for EMC:

- Conducted Emission
- Radiated Emission
- Conducted Susceptibility
- Radiated Susceptibility

Radio Frequency

The 'dream'

Wide frequency Transceivers

- Wide frequency band
- Large signals dynamics
- Low Spurs
- High Image rejection
- Low Phase Noise

High data rate

- Complex modulation & demodulation
- Wide sampling bandwidth & processing

High reliability

- Signal to Noise Ratio
- Error detection / correction

High efficiency

 Usually efficiency is quite low from 10% to 20% from power supply and RF dBm output

Signal processing

Modulators/Demodulators

- Complex modulations processing (from BPSK to APSK/QAM)
- High Doppler rate/vs Bit rate
- Frequency & Phase control loop
- Acquisition & Tracking
- Cognitive algorithms
- Baseband processing & Filtering

Low Level Layer Protocols

- Error correction
- Bit coding/decoding
- Encryption/decryption

What is Space software?

Two domains : Flight (Embedded Software) and Ground (Control, Support and Exploitation)

Flight software:

- On-Board Computer
- Observation and Processing (Communication, Cameras, ...)
- Data transfer

Highlights:

- Real time (execution time must be deterministic)
- Multiple Computers, processors and FPGA with distributed tasks.
- Redundancy and errors detection and mitigation.

Connex Industries: Automotive, Aeronautics, Defence

Ground software:

- Satellite/Flight Control
- Data Management
- Ground Support Equipment (Antennas, data centres...)
- Pre-launch phase : Integration, Validation, Simulations

Connex Industries: Automotive, Big Data, Telecoms

Technologies

Programming Languages:

- Embedded software : ADA, C, VHDL
- Ground software : Python, Java, C++, Web...

Domains :

Development, Integration, Validation, Tooling

Entities :

"Old School": ESA, Ariane Espace, Thales Alenia Space...

- Highly Critical Software High reliability
- Dedicated/Specialized Products
- "New Space" : SMEs, Startups, Universities, Non-Specialized Industries
- Less Critical Missions
- Components On The Shelves (From Automotive for example)
- Startup/SMEs : Nanosat, Low Earth Orbit, Experiments, R&D...

SW architecture example

Hypervisors are sometimes needed for some complex integrations

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Comp uters_and_Data_Handling/Architectures_of_Onboard_Data_Systems

System approach

Functional Analysis

- Describe the life cycle of a system from design to refurbishment
- Describes interactions with outer elements
 - Constraints
 - Main functions

Safety/quality analysis

- Feared events quotation
 - Space reference
 - Automotive reference
- Failure trees
 - From feared events down to causes and combinations
- Failure Modes Effects and Critical Analysis
 - From defects to consequences

Model Based

- System Engineering
 - Follows the functional analysis
- Design (software)

System approach - Safety

Feared events quotation

- Space reference more on the severity
- Automotive reference considering severity, exposure rate and mitigation capabilities

		Description of consequences (failure effects)		
Severity category	Severity level	Dependability effects (as specified in ECSS-Q-ST-30)	Safety effects (as specified in ECSS-Q-ST-40)	
Catastrophic	1	Failure propagation (refer to 4.2c)	Loss of life, life-threatening or permanently disabling injury or occupational illness.	
			Loss of an interfacing manned flight system.	
			Severe detrimental environmental effects.	
			Loss of launch site facilities.	
			Loss of system.	
Critical	2	Loss of mission	Temporarily disabling but not life-threatening injury, or temporary occupational illness.	
			Major detrimental environmental effects.	
			Major damage to public or private properties.	
			Major damage to interfacing flight systems.	
			Major damage to ground facilities.	
Major	3	Major mission degradation		
Minor or Negligible	4	Minor mission degradation or any other effect		

Functional Safety and Automotive

ASIL - Automotive Safety Integrity Level

Severity S	Exposure E	Controllability C		
		61	02	63
S1	E1	QM	QM.	QM
	E2	QM	QM	QM
	E3	QM	QM	ASILA
	E4	QM	ASILA	ASIL B
82	E1	QM	QM	QM
	E2	QM	QM	ASILA
	E3	QM	ASILA	ASIL B
	E4	ASIL A	ASIL B	ASILC
\$3	E1	QM	QM	ASILA
	E2	QM	ASILA	ASIL B
	E3	ASILA	ASIL B	ASIL C
	E4	ASIL B	ASILC	ASIL D

- Objective: Freedom from unacceptable risk of physical injury or of damage to the health of people (including via property or the environment)
- Examples: ISO 26262 (Road Vehicles Functional Safety), ISO 25119 (Tractors and Machinery for Agriculture and Forestry), IEC 62304 (Medical Device Software) ...

SYNOPSYS'

Cybersecurity

Why is it needed?

The importance of defending space assets and activities from cyber-attacks will increase as space becomes more strongly integrated in other sectors

ESA plans to address cyber security at various levels of innovation, specifically regarding technology and engineering

Flexibility and security by design

• Taking into account the rapidly changing nature of the cybersecurity threat

Integration of security into the ESA system engineering process

• Including the approach is a systematic way

First cybersecurity 'Centre of Excellence' for space assets

Identifying the System/Sub-Sytems interfaces and attack surfaces

Artificial Intelligence

AI, and in particular ML, still has some way to go before it is used extensively for space applications

Where today

- Satellite operations
- **Systems** analyzing the huge amount of data that comes from each space mission

Future implementations

- Al currently lacks the reliability and adaptability required in new software; these qualities will need to be improved before it takes over the space industry.
- Innovative security concepts, mechanisms and architectures.
- Advanced Concepts Team (ACT) is developing new concepts based on AI.

Modern Quality Challenge (NewSpace)

- From "Quick and Dirty" (2000's) to professionnal (2020's) product
- Pareto Law (80-20):
 - 80-20: 80% of the work done with 20% of the effort
 - So, 20% remains to be done \rightarrow 80% of the effort
 - ...80% of an exam preparation done with 20% of the effort... ☺
- <u>/!\</u> Devil is in the details ← *Technical Expertise* growing !!!
- Modern Quality: is <u>NOT</u> a Controller but a Facilitator
- Modern Space Quality:
- → Final Decision belongs to Project Office (PM, SE, PA) + Customer.

(=customer oriented beyond marketing blabla)

→ Risk based decision balancing with cost and schedule

https://www.linkedin.com/pulse/triangle-dilemma-quality-cost-time-dr-lynda-wee/

Quality – Standards

٠

•

٠

Near-Earth Object Observations Program

https://www.jpl.nasa.gov/news/twenty-years-of-tracking-near-earth-objects

2020-Feb-23 23:42:22 UTC

00.000x firm

(99942) Apophis

Discovered: June 2004

Dimensions: 325m diameter, 45million tons

(Eiffel tower: 330m, but 7300 tons)

Impact speed if any: 12.62km/s

Energy: 3.6e18 Joules corresponding to 800 Megatons of TNT equivalent.

1st collision forecast: April 2029

Now discarded to a nearby trajectory at 30 000km (1/10th of the earth/moon distance) in 2016

2nd collision possibility: April 2036 with very low risk

NASA Double Asteroid Redirection Test (DART) Mission

DART is the world's first planetary defense test mission

- On Sept. 26 2022, DART intentionally crashed into Dimorphos, the asteroid moonlet of Didymos
- The kinetic impact into Dimorphos was supposed to slightly change its motion in space
- From 20 million miles away from DART Camera experts were uncertain whether DART would be able to spot the asteroid yet.
- The mission was a first success as DART crashed as expected on asteroid surface

https://www.lessentiel.lu/de/story/rakete-wird-in-asteroid-crashen-nasa-veroeffentlicht-foto-des-ziels-247191609297

Question

Does somebody know the goal of the Hera mission?

Hera - Project presentation

Launch date: October 2024

Prime: GomSpace (JUVENTAS) / ESA (HERA)

Goal: planetary defense mission.

EmTroniX participation: develop the low frequency radar that will map the impact left by DART.

More in this video

Challenge time

JUVENTAS – Dimorphos

JUVENTAS – Setup

https://www.nanosats.eu/sat/juventas

Launch (Forecast): 08/10/2024 Arrive to Didymos: 28/12/2027

The kind of payloads we are designing & producing

Into details

Our Software Defined Radio – Global architecture

Power board	Processing board	Transceiver board	Back-plane
Satellite platform	Core computing of the	Clocks & IF sampling	Connect the core of our
interface	Payload		SDR together
 Main power supplies Radiation tolerant	 FPGA & SoC DDR3 memory Golden image Three (3) User image Mass Memory (NAND) Power supplies 	 Low Phase Noise TCXO Synchronous & flexible	 Power distribution Debug & Service
processor Housekeeping Communication		Clock tree Dual channels High	connectors Communication means High-speed buses
Interfaces		Speed ADC& DAC	interfaces

Testing at ESTEC (ESA)

Vibrations up to 24g

Reference sensors to monitor and measure the test

Space projects

AISSat-1

2008 OHB LuxSpace

- AIS Receiver, Downlink and TM
- On-Board-Computer interface
- Solar Panels Power tracker and Battery Power management
- Baseband AIS Digital Sampler
- GPS antenna

2010 OHB LuxSpace

- FPGA & ASIC based AIS Receiver
- Operated on board of the ISS
- RF front end
- Analog processing chain
- Digital Signal Processing
- FPGA synthesized processor
- ISS interface
- Power management

Space projects

Lunar Pathfinder (4M) 2014

OHB LuxSpace

- Electronic development
 - **OBC** interface
 - Downlink modulator
 - Battery protection
 - Battery Charger
- Satellite Assembly
 - Electronics
 - Satellite harness
 - Batteries (Lithium & Li-Ion)
 - Solar panel
 - Antenna
 - Additional payload

Confidential – This document is the property of EmTroniX

SDR Autonomous transceiver for Mars orbiter

2018 QinetiQ / ESA

- FPGA-based digital implementation in view of a future flight-qualified unit.
- DSR-based flexible architecture
- Efficient DSP algorithms for automatic identification of received signal attributes
- Multi data rate design supporting various phase modulation schemes
- Support of high Doppler Dynamics and severe SNR conditions

Space projects – Current projects

ScienceTaxi Electronics and Software

2021 - 2024 *Yuri*

Next generation micro-gravity experiment platform. Development of highly reliable electronics on a complete system High efficiency full electronic system (9 PCBs) :

- Using in-house ECCS compliant LCL
- Managing Real time operation of experiments (up to 40)
- Controlling ambient temperature and Local gravity (Moon, Mars or Earth)
- Interfacing with different vehicles and ISS
- Balancing power to maximize experiments' availability

EGSE to support

- Easy installation of Science Shells
- Experiment simulation

Altius

2019 - 2023 ESA / QinetiQ / OIP

- System level analysis
- Electronics design and PCB layout of the optical mechanism motor drivers
- Mechanism Firmware algorithms and specification
- Engineering, Structural/Thermal and Flight models
- Full ECSS electronics development

This is not an end...

We are hiring!

THANK YOU

a

Ó

D

0